Using Urban Landscape Trajectories to Develop a Multi-Temporal Land Cover Database to Support Ecological Modeling
نویسندگان
چکیده
Urbanization and the resulting changes in land cover have myriad impacts on ecological systems. Monitoring these changes across large spatial extents and long time spans requires synoptic remotely sensed data with an appropriate temporal sequence. We developed a multi-temporal land cover dataset for a six-county area surrounding the Seattle, Washington State, USA, metropolitan region. Land cover maps for 1986, 1991, 1995, 1999, and 2002 were developed from Landsat TM images through a combination of spectral unmixing, image segmentation, multi-season imagery, and supervised classification approaches to differentiate an initial nine land cover classes. We then used ancillary GIS layers and temporal information to define trajectories of land cover change through multiple updating and backdating rules and refined our land cover classification for each date into 14 classes. We compared the accuracy of the initial approach with the landscape trajectory modifications and determined that the use of landscape trajectory rules increased our ability to differentiate several classes including bare soil (separated into cleared for development, agriculture, and clearcut forest) and three intensities of urban. Using the temporal dataset, we found that between 1986 and 2002, urban land cover increased from 8 to 18% of our study area, while lowland deciduous and mixed forests decreased from 21 to 14%, and grass and agriculture decreased from 11 to 8%. The intensity of urban land cover increased with 252 km in Heavy Urban in 1986 increasing to 629 km by 2002. The ecological OPEN ACCESS Remote Sens. 2009, 1 1354 systems that are present in this region were likely significantly altered by these changes in land cover. Our results suggest that multi-temporal (i.e., multiple years and multiple seasons within years) Landsat data are an economical means to quantify land cover and land cover change across large and highly heterogeneous urbanizing landscapes. Our data, and similar temporal land cover change products, have been used in ecological modeling of past, present, and likely future changes in ecological systems (e.g., avian biodiversity, water quality). Such data are important inputs for ecological modelers, policy makers, and urban planners to manage and plan for future landscape change.
منابع مشابه
Spatial–Temporal Monitoring of Ecotonal Belt Using Landscape Ecological Indices in the Central Elburz Region: Remote Sensing and GIS Analysis
Iran has mountainous landscapes and half of its surface is occupied by highlands. Moreover, Iran is an arid country and deserts are located at lower altitudes. Most metropolitan areas are positioned in mid-altitudes between mountain and desert. Cities grow upwardly toward the highlands under pressures of urbanization and desertification. Foothill ecotones are a zone between upland mountains and...
متن کاملSpatial–Temporal Monitoring of Ecotonal Belt Using Landscape Ecological Indices in the Central Elburz Region: Remote Sensing and GIS Analysis
Iran has mountainous landscapes and half of its surface is occupied by highlands. Moreover, Iran is an arid country and deserts are located at lower altitudes. Most metropolitan areas are positioned in mid-altitudes between mountain and desert. Cities grow upwardly toward the highlands under pressures of urbanization and desertification. Foothill ecotones are a zone between upland mountains and...
متن کاملA Spatial-Temporal Modeling Approach to Reconstructing Land-Cover Change Trajectories from Multi-temporal Satellite Imagery
Temporal trajectories of land-cover change provide important information on landscape dynamics that are critical to our understanding of complex human–environment adaptive systems. The increasing availability of long time series of satellite images, especially the recent free release of multi-decadal Landsat satellite archive, presents a great opportunity to improve our ability to detect land-c...
متن کاملAssessing Land Cover Change Trajectories in Olomouc, Czech Republic
Olomouc is a unique and complex landmark with widespread forestation and land use. This research work was conducted to assess important and complex land use change trajectories in Olomouc region. Multi-temporal satellite data from 1991, 2001 and 2013 were used to extract land use/cover types by object oriented classification method. To achieve the objectives, three different aspects were used: ...
متن کاملAssessment and Spatial Planning of Landscape Ecological Connectivity for Biodiversity Management (Case Study: Qazvin Province)
Habitat and ecosystem fragmentation and, consequently, the loss of landscape connectivity are major causes of biodiversity destruction, leading to disruption of material, energy, and information flow at the landscape scale. Given the importance of this issue, the current study aimed to evaluate the ecological connectivity and spatial planning of Qazvin Province, in order to re-establish and pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 1 شماره
صفحات -
تاریخ انتشار 2009